
View Server - Operator Guide

EOX IT Services GmbH

Jul 06, 2022

CONTENTS

1 Introduction 1

1.1 Components . 1

1.2 Docker Images . 2

1.3 ConĄguration Files . 3

1.4 Initialization and Setup . 3

2 Initialization 5

2.1 Running the Initialization . 5

2.2 ConĄguration of the Initialization . 5

3 Setup 11

3.1 Docker . 11

3.2 Docker Swarm . 11

3.3 Docker Image Retrieval . 12

3.4 Logging . 12

3.5 Stack Deployment . 13

4 Configuration 15

4.1 Stack Re-deploy . 15

4.2 Stack Re-creation . 15

4.3 Docker Compose Settings . 16

4.4 Environment Variables . 16

4.5 ConĄguration Files . 18

4.6 Sensitive variables . 23

5 Service Management 25

5.1 Scaling . 25

5.2 Updating Images . 25

5.3 Updating conĄgurations or environment Ąles . 25

5.4 Inspecting reports . 26

5.5 Inspecting logs in development . 26

5.6 Inspecting logs in production . 26

5.7 Increasing logging level . 28

5.8 Cleaning up . 28

5.9 Database backup . 29

6 Data Ingestion 31

6.1 Redis Queues . 31

6.2 Direct Data Management . 33

7 Access 37

7.1 General overview . 37

7.2 Routing with traeĄk . 37

7.3 Authentication and Authorization . 38

7.4 ConĄguration . 38

i

ii

CHAPTER

ONE

INTRODUCTION

This guide details the operation of a View Server and all of its components.

Since the View Server is a Docker based software and all of its components are distributed and executed in context

of Docker images and containers, basic knowledge of Docker and Docker Swarm is a prerequisite.

1.1 Components

Figure 1.1.1: View Server Architecture

The View Server consists of the following service components (with their respective Docker image in parenthesis):

• Reverse proxy (traeĄk)

• Web Client (client)

1

View Server - Operator Guide

• Cache (cache)

• Renderer (core)

• Registrar (core)

• Seeder (cache)

• Preprocessor (preprocessor)

• Ingestor (ingestor)

• Database (postgis)

• Queue Manager (redis)

• Log collector (Ćuentd)

• Kibana (kibana)

• Elasticsearch (elasticsearch)

• Shibboleth SP3 (shibauth)

These services are bundled and managed together in a Docker Swarm via Docker Compose conĄguration Ąles.

1.2 Docker Images

The software is distributed as Docker images, which can be instantiated and run in their intended role. Some images

are hosted on docker hub, the official and default repository for Docker images. Other images reside on an EOX

hosted registry. Images from the official registry are only identiĄed via their name, whereas images from the EOX

registry conventionally use the full URL, including the domain name. Below is a list of the used images:

• mdillon/postgis:10

• redis

• traeĄk

• elasticsearch

• kibana

• atmoz/sftp

• registry.gitlab.eox.at/esa/prism/vs/Ćuentd

• registry.gitlab.eox.at/esa/prism/vs/pvs_core

• registry.gitlab.eox.at/esa/prism/vs/pvs_cache

• registry.gitlab.eox.at/esa/prism/vs/pvs_preprocessor

• registry.gitlab.eox.at/esa/prism/vs/pvs_client

• registry.gitlab.eox.at/esa/prism/vs/pvs_ingestor

• registry.gitlab.eox.at/esa/prism/vs/pvs_shibauth

2 Chapter 1. Introduction

https://hub.docker.com/
gitlab.eox.at
gitlab.eox.at

View Server - Operator Guide

1.3 Configuration Files

The following conĄguration Ąles impact the behavior of the View Server:

• index.html: This is the main Ąle to conĄgure the client. In this Ąle, the viewing layer, search and download

endpoints are conĄgured. Usually this is associated with additional backdrop and overlay layers.

• preprocessor.yml: This Ąle conĄgures the preprocessing steps.

• mapcache.xml: This Ąle deĄnes the input sources of the cache and its published layers.

• init-db.sh: This Ąle sets up the registrar and renderer side of the VS.

1.4 Initialization and Setup

In order to help with the initial setup of a VS, the pvs_starter package described in the section Initialization

allows to quickly establish the required structure of conĄguration Ąles.

The section Setup describes how to deploy a Docker Swarm stack using the conĄguration Ąles generated in the

initialization step.

1.3. Configuration Files 3

View Server - Operator Guide

4 Chapter 1. Introduction

CHAPTER

TWO

INITIALIZATION

In order to set up an instance of the View Server (VS), the separate pvs_starter utility is recommended.

2.1 Running the Initialization

The pvs_starter utility is distributed as a Python package and easily installed via pip.

pip3 install pvs_starter git+git@gitlab.eox.at:esa/prism/pvs_starter.git

Now a new VS instance can be set up like this:

python3 -m pvs_starter.cli config.yaml out/ -f

This takes the initialization conĄguration config.yaml to generate the required structure of a new VS instance in

the out/ directory.

2.2 Configuration of the Initialization

The important part of the initialization is the conĄguration. The Ąle is structured in YAML as detailed below. It

contains the following sections:

2.2.1 database

Here, access details and credentials of the database are stored. It deĄnes the internal database name, user, and

password that will be created when the stack is deployed. Note that there is no host setting, as this will be handled

automatically within the Docker Swarm.

database:

name: vs_db

user: vs_user

password: Go-J_eOUvj2k

5

View Server - Operator Guide

2.2.2 django_admin

This section deals with the setup of a Django admin account. This is used to later access the admin panel to inspect

the registered data.

django_admin:

user: admin

mail: office@eox.at

password: jvLwv_20x-69

2.2.3 preprocessor

Here, the preprocessing can be conĄgured in detail.

2.2.4 products

This section deĄnes product_type related information. The two most important settings here are the

type_extractor and level_extractor structures which specify how the product type and product level should

be extracted from the metadata. For this, an XPath (or multiple) can be speciĄed to retrieve that information.

The types section deĄnes the available product_types and which browse and mask types are to be generated.

products:

type_extractor:

xpath:

namespace_map:

level_extractor:

xpath:

namespace_map:

types:

PL00:

default_browse: TRUE_COLOR

browses:

TRUE_COLOR:

red:

expression: red

range: [1000, 15000]

nodata: 0

green:

expression: green

range: [1000, 15000]

nodata: 0

blue:

expression: blue

range: [1000, 15000]

nodata: 0

FALSE_COLOR:

red:

expression: nir

range: [1000, 15000]

nodata: 0

green:

expression: red

range: [1000, 15000]

nodata: 0

blue:

(continues on next page)

6 Chapter 2. Initialization

View Server - Operator Guide

(continued from previous page)

expression: green

range: [1000, 15000]

nodata: 0

NDVI:

grey:

expression: (nir-red)/(nir+red)

range: [-1, 1]

masks:

validity:

validity: true

2.2.5 collections

In the collections section, the collections are set up and it is deĄned which products based on product_type

and product_level will be inserted into them. The product_types must list types deĄned in the products

section.

collections:

COLLECTION:

product_types:

- PL00

product_levels:

- Level_1

- Level_3

2.2.6 storages

Here, the three relevant storages can be conĄgured: the source, preprocessed, and cache storages.

The source storage deĄnes the location from which the original Ąles will be downloaded to be preprocessed.

Preprocessed images and metadata will then be uploaded to the preprocessed storage. The cache service will

cache images on the cache storage.

Each storage deĄnition uses the same structure and can target various types of storages, such as OpenStack swift.

These storage deĄnitions will be used in the appropriate sections.

storages:

source:

auth_type: keystone

auth_url:

version: 3

username:

password:

tenant_name:

tenant_id:

region_name:

container:

preprocessed:

auth_type: keystone

auth_url:

version: 3

username:

password:

tenant_name:

(continues on next page)

2.2. Configuration of the Initialization 7

View Server - Operator Guide

(continued from previous page)

tenant_id:

region_name:

container:

cache:

type: swift

auth_type: keystone

auth_url: https://auth.cloud.ovh.net/v3/

auth_url_short: https://auth.cloud.ovh.net/

version: 3

username:

password:

tenant_name:

tenant_id:

region_name:

container:

2.2.7 cache

This section deĄnes the exposed services, and how the layers shall be cached internally.

cache:

metadata:

title: PRISM Data Access Service (PASS) developed by EOX

abstract: PRISM Data Access Service (PASS) developed by EOX

url: https://vhr18.pvs.prism.eox.at/cache/ows

keyword: view service

accessconstraints: UNKNOWN

fees: UNKNOWN

contactname: Stephan Meissl

contactphone: Please contact via mail.

contactfacsimile: None

contactorganization: EOX IT Services GmbH

contactcity: Vienna

contactstateorprovince: Vienna

contactpostcode: 1090

contactcountry: Austria

contactelectronicmailaddress: office@eox.at

contactposition: CTO

providername: EOX

providerurl: https://eox.at

inspire_profile: true

inspire_metadataurl: TBD

defaultlanguage: eng

language: eng

services:

wms:

enabled: true

wmts:

enabled: true

connection_timeout: 10

timeout: 120

expires: 3600

key: /{tileset}/{grid}/{dim}/{z}/{x}/{y}.{ext}

tilesets:

VHR_IMAGE_2018__TRUE_COLOR:

(continues on next page)

8 Chapter 2. Initialization

View Server - Operator Guide

(continued from previous page)

title: VHR Image 2018 True Color

abstract: VHR Image 2018 True Color

VHR_IMAGE_2018__FALSE_COLOR:

title: VHR Image 2018 False Color

abstract: VHR Image 2018 False Color

VHR_IMAGE_2018__NDVI:

title: VHR Image 2018 NDVI

abstract: VHR Image 2018 NDVI

style: earth

VHR_IMAGE_2018_Level_1__TRUE_COLOR:

title: VHR Image 2018 Level 1 True Color

abstract: VHR Image 2018 Level 1 True Color

VHR_IMAGE_2018_Level_1__FALSE_COLOR:

title: VHR Image 2018 Level 1 False Color

abstract: VHR Image 2018 Level 1 False Color

VHR_IMAGE_2018_Level_1__NDVI:

title: VHR Image 2018 Level 1 NDVI

abstract: VHR Image 2018 Level 1 NDVI

style: earth

VHR_IMAGE_2018_Level_1__TRUE_COLOR:

title: VHR Image 2018 Level 3 True Color

abstract: VHR Image 2018 Level 3 True Color

VHR_IMAGE_2018_Level_1__FALSE_COLOR:

title: VHR Image 2018 Level 3 False Color

abstract: VHR Image 2018 Level 3 False Color

VHR_IMAGE_2018_Level_1__NDVI:

title: VHR Image 2018 Level 3 NDVI

abstract: VHR Image 2018 Level 3 NDVI

style: earth

Once the initialization is Ąnished the next step is to deploy the Docker Swarm stack as described in the section

Setup.

2.2. Configuration of the Initialization 9

View Server - Operator Guide

10 Chapter 2. Initialization

CHAPTER

THREE

SETUP

In this chapter the setup of a new VS stack is detailed. Before this step can be done, the conĄguration and envi-

ronment Ąles need to be present. These Ąles can be added manually or be created as described in the Initialization

step.

3.1 Docker

In order to deploy the Docker Swarm stack to the target machine, Docker and its facilities need to be installed. This

step depends on the systems architecture. On a Debian based system this may look like this:

sudo apt-get install \

apt-transport-https \

ca-certificates \

curl \

gnupg-agent \

software-properties-common

curl -fsSL https://download.docker.com/linux/debian/gpg | sudo apt-key add -

add the apt repository

sudo add-apt-repository \

"deb [arch=amd64] https://download.docker.com/linux/debian \

$(lsb_release -cs) \

stable"

fetch the package index and install Docker

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

3.2 Docker Swarm

Now that Docker is installed, the machine can either create a new swarm or join an existing one.

To create a new Swarm, the following command is used:

docker swarm init

Alternatively, an existing Swarm can be joined. The easiest way to do this, is to obtain a join-token. On an

existing Swarm manager (where a Swarm was initialized or already joined as manager) run this command:

docker swarm join-token worker

This prints out a command that can be run on a machine to join the swarm:

11

View Server - Operator Guide

docker swarm join --token <obtained token>

It is possible to dedicate certain workers for example to contribute to ingestion exclusively, while others can take

care only for rendering. This setup has beneĄts, when a mixed setup of nodes with different parameters is available.

In order to set a node for example as external, to contribute in rendering only, one can simply run:

docker node update --label-add type=external <node-id>

Additionally, it is necessary to modify placement parameter in the docker compose Ąle.

renderer:

deploy:

placement:

constraints:

- node.labels.type == external

Additional information for swarm management can be obtained in the official documentation of the project.

3.3 Docker Image Retrieval

Before the Docker images can be used, they have to be retrieved Ąrst. Currently, all images used in VS that are not

off-the-shelf are hosted on the public registry.gitlab.eox.at registry. For production deployment, tagged

releases in format release-<major.minor.patch> should be used.

To pull the relevant images:

docker pull registry.gitlab.eox.at/esa/prism/vs/pvs_core:release-x.x.x

docker pull registry.gitlab.eox.at/esa/prism/vs/pvs_cache:release-x.x.x

docker pull registry.gitlab.eox.at/esa/prism/vs/pvs_preprocessor:release-x.x.x

docker pull registry.gitlab.eox.at/esa/prism/vs/pvs_client:release-x.x.x

docker pull registry.gitlab.eox.at/esa/prism/vs/fluentd:release-x.x.x

docker pull registry.gitlab.eox.at/esa/prism/vs/pvs_ingestor:release-x.x.x

docker pull registry.gitlab.eox.at/esa/prism/vs/pvs_sftp:release-x.x.x

docker pull registry.gitlab.eox.at/esa/prism/vs/pvs_shibauth:release-x.x.x

3.4 Logging

For production, the docker images in the compose Ąles use the default logging driver. Therefore we conĄgure the

default logging driver for the docker daemon to be Ćuent by createing the Ąle /etc/docker/daemon.json with

the following content:

{

"log-driver": "fluentd"

}

For development, we donŠt want to redirect all of the docker logging output, so the respective compose Ąles for dev

conĄgure the logging driver for each container.

12 Chapter 3. Setup

https://docs.docker.com/engine/reference/commandline/swarm/

View Server - Operator Guide

3.5 Stack Deployment

Before the stack deployment step, some environment variables and conĄgurations -which are considered sensitive-

should be created beforehand, this can done following the Sensitive variables steps that are included in the

next Configuration section.

Now that a Docker Swarm is established and docker secrets and conĄgs are created, it is time to deploy the VS as

a stack. This is done using the created Docker Compose conĄguration Ąles. In order to enhance the re-usability,

these Ąles are split into multiple parts to be used for both development and Ąnal service deployment.

For a development deployment one would do (replace name with the actual service identiĄer:

docker stack deploy -c docker-compose.<name>.yml -c docker-compose.<name>.dev.yml

→˓<stack-name>

This command actually performs a variety of tasks. First off, it obtains any missing images, such as the image for

the reverse proxy, the database, or the redis key-value store.

When all relevant images are pulled from their respective repository the services of the stack are initialized. In

the default setting, each service is represented by a single container of its respective service type. When starting

for the Ąrst time, the startup procedure takes some time, as everything needs to be initialized. This includes the

creation of the database, user, required tables, and the Django instance.

That process can be supervised using the docker service ls command, which lists all available services and

their respective status.

Continue to the next section Configuration to read how a running VS stack can be conĄgured.

3.5. Stack Deployment 13

View Server - Operator Guide

14 Chapter 3. Setup

CHAPTER

FOUR

CONFIGURATION

This chapter details how a running VS stack can be conĄgured. And what steps are necessary to deploy the con-

Ąguration.

In order for these conĄguration changes to be picked up by a running VS stack and to take effect some steps need

to be performed. These steps are either a Şre-deployŤ of the running stack or a complete re-creation of it.

4.1 Stack Re-deploy

As will be further described, for some conĄgurations it is sufficient to Şre-deployŤ the stack which automatically

re-starts any service with changed conĄguration. This is done re-using the stack deployment command:

docker stack deploy -c docker-compose.<name>.yml -c docker-compose.<name>.dev.yml

→˓<stack-name>

Warning: When calling the docker stack deploy command, it is vital to use the command with the same

Ąles and name the stack was originally created.

4.2 Stack Re-creation

In some cases a stack re-redeploy is not enough, as the conĄguration was used for a materialized instance which

needs to be reverted. The easiest way to do this is to delete the volume in question. If, for example, the ren-

derer/registrar conĄguration was updated, the instance-data volume needs to be re-created.

First, the stack needs to be shut down. This is done using the following command:

docker stack rm <stack-name>

When that command has completed (it is advisable to wait for some time until all containers have actually stopped)

the next step is to delete the instance-data volume:

docker volume rm <stack-name>_instance-data

Note: It is possible that this command fails, with the error message that the volume is still in use. In this case, it

is advisable to wait for a minute and to try the deletion again.

Now that the volume was deleted, the stack can be re-deployed as described above, which will trigger the automatic

re-creation and initialization of the volume. For the instance-data, it means that the instance will be re-created

and all database models with it.

15

View Server - Operator Guide

4.3 Docker Compose Settings

These conĄgurations are altering the behavior of the stack itself and its contained services. A complete reference

of the conĄguration Ąle structure can be found in the Docker Compose documentation.

4.4 Environment Variables

These variables are passed to their respective containers environment and change the behavior of certain function-

ality. They can be declared in the Docker Compose conĄguration Ąle directly, but typically they are bundled by

Ąeld of interest and then placed into .env Ąles and then passed to the containers. So for example, there will be a

<stack-name>_obs.env Ąle to store the access parameters for the object storage. All those Ąles are placed in the

env/ directory in the instances directory.

Environment variables and .env Ąles are passed to the services via the docker-compose.yml directives. The

following example shows how to pass .env Ąles and direct environment variables:

services:

....

registrar:

env_file:

- env/stack.env

- env/stack_db.env

- env/stack_obs.env

environment:

INSTANCE_ID: "prism-view-server_registrar"

INSTALL_DIR: "/var/www/pvs/dev/"

INIT_SCRIPTS: "/configure.sh /init-db.sh /initialized.sh"

STARTUP_SCRIPTS: "/wait-initialized.sh"

WAIT_SERVICES: "redis:6379 database:5432"

OS_PASSWORD_FILE: "/run/secrets/OS_PASSWORD"

...

4.4.1 .env Files

The following .env Ąles are typically used:

• <stack-name>.env: The general .env Ąle used for all services

• <stack-name>_db.env: The database access credentials, for all services interacting with the database.

• <stack-name>_django.env: This env Ąles deĄnes the credentials for the django admin user to be used

with the admin GUI.

• <stack-name>_obs.env: This contains access parameters for the object storage(s).

4.4.2 Groups of Environment Variables

GDAL Environment Variables

This group of environment variables controls the intricacies of GDAL. They control how GDAL interacts with its

supported Ąles. As GDAL supports a variety of formats and backend access, most of the full list of env variables

are not applicable and only a handful are actually relevant for the VS.

• GDAL_DISABLE_READDIR_ON_OPEN - Especially when using an Object Storage backend with a very large

number of Ąles, it is vital to activate this setting (=TRUE) in order to suppress to read the whole directory

contents which is very slow for some OBS backends.

16 Chapter 4. Configuration

https://docs.docker.com/compose/compose-file/
https://gdal.org/user/configoptions.html

View Server - Operator Guide

• CPL_VSIL_CURL_ALLOWED_EXTENSIONS - This limits the Ąle extensions to disable the lookup of so called

sidecar Ąles which are not used for VS. By default this value is used: =.TIF,.tif,.xml.

OpenStack Swift Environment Variables

These variables deĄne the access coordinates and credentials for the OpenStack Swift Object storage backend.

This set of variables deĄne the credentials for the object storage to place the preprocessed results:

• ST_AUTH_VERSION

• OS_AUTH_URL_SHORT

• OS_AUTH_URL

• OS_USERNAME

• OS_PASSWORD

• OS_TENANT_NAME

• OS_TENANT_ID

• OS_REGION_NAME

• OS_USER_DOMAIN_NAME

This set of variables deĄne the credentials for the object storage to retrieve the original product Ąles:

• OS_USERNAME_DOWNLOAD

• OS_PASSWORD_DOWNLOAD

• OS_TENANT_NAME_DOWNLOAD

• OS_TENANT_ID_DOWNLOAD

• OS_REGION_NAME_DOWNLOAD

• OS_AUTH_URL_DOWNLOAD

• ST_AUTH_VERSION_DOWNLOAD

• OS_USER_DOMAIN_NAME_DOWNLOAD

VS Environment Variables

These environment variables are used by the VS itself to conĄgure various parts.

Note: These variables are used during the initial stack setup. When these variables are changed, they will not be

reĆected unless the instance volume is re-created.

• COLLECTION - This deĄnes the main collections name. This is used in various parts of the VS and serves as

the layer base name.

• UPLOAD_CONTAINER - This controls the bucket name where the preprocessed images are uploaded to.

• DJANGO_USER, DJANGO_MAIL, DJANGO_PASSWORD - The Django admin user account credentials to use the

Admin GUI.

• REPORTING_DIR - This sets the directory to write the reports of the registered products to.

Note: These variables are used during the initial stack setup. When these variables are changed, they will not be

reĆected unless the database volume is re-created.

These are the internal access credentials for the database:

4.4. Environment Variables 17

View Server - Operator Guide

• POSTGRES_USER

• POSTGRES_PASSWORD

• POSTGRES_DB

• DB

• DB_USER

• DB_PW

• DB_HOST

• DB_PORT

• DB_NAME

4.5 Configuration Files

Such Ąles are passed to the containers in a similar way as environment variables, but usually contain more settings

at once and are placed at a speciĄc path in the container at runtime.

ConĄguration Ąles are passed into the containers using the configs section of the docker-compose.yaml Ąle.

The following example shows how such a conĄguration Ąle is deĄned and the used in a service:

...

configs:

my-config:

file: ./config/example.cfg

...

services:

myservice:

...

configs:

- source: my-config

target: /example.cfg

The following conĄguration Ąles are used throughout the VS:

4.5.1 <stack-name>_init-db.sh

This shell script ĄleŠs purpose is to set up the EOxServer instance used by both the renderer and registrar.

Some browsetype functions that can be used for elevation rasters are:

hillshade(band)

• range 0 - 255

• nodata 0

aspect(band)

• range 0 - 360

• nodata -9999

slopeshade(band)

• range 0 - 255

• nodata -9999

contours(band, 0, 30)

18 Chapter 4. Configuration

View Server - Operator Guide

• range 0 - 500

• nodata - 9999

Example:

python3 manage.py browsetype create "DEM" "elevation" \

--grey "gray" \

--grey-range -100 4000 \

--grey-nodata 0 \

--traceback

python3 manage.py browsetype create "DEM" "hillshade" \

--grey "hillshade(gray)" \

--grey-range 0 255 \

--grey-nodata 0 \

--traceback

python3 manage.py browsetype create "DEM" "aspect" \

--grey "aspect(gray)" \

--grey-range 0 360 \

--grey-nodata -9999 \

--traceback

python3 manage.py browsetype create "DEM" "slope" \

--grey "slopeshade(gray)" \

--grey-range 0 255 \

--grey-nodata -9999 \

--traceback

python3 manage.py browsetype create "DEM" "contours" \

--grey "contours(gray, 0, 30)" \

--grey-range 0 500 \

--grey-nodata -9999 \

--traceback

4.5.2 <stack-name>_index-dev.html/<stack-name>_index-ops.html

The clients main HTML page, containing various client settings. The dev one is used for development only,

whereas the ops one is used for operational deployment.

4.5. Configuration Files 19

View Server - Operator Guide

4.5.3 <stack-name>_mapcache-dev.xml/<stack-name>_mapcache-ops.xml

The conĄguration Ąle for MapCache, the software powering the cache service. Similarly to the client conĄguration

Ąles, the dev and ops Ąles used for development and operational usage respectively. Further documentation can

be found at the official site.

4.5.4 <stack-name>_preprocessor-config.yaml

The conĄguration for the proprocessing service to use to process to be ingested Ąles.

The Ąles are using YAML as a format and are structured in the following fashion:

source/target

Here, the source Ąle storage and the target Ąle storage are conĄgured. This can either be a local

directory or an OpenStack Swift object storage. If Swift is used for source, download container can

be left unset. In that case, container can be inferred from the given path in format <bucket>/<object-

name>.

workdir

The workdir can be conĄgured, to determine where the intermediate Ąles are placed. This can be

convenient for debugging and development.

keep_temp

This boolean decides if the temporary directory for the preprocessing will be cleaned up after being

Ąnished. Also, convenient for development.

metadata_glob

This Ąle glob is used to determine the main metadata Ąle to extract the product type from. This Ąle

will be searched in the downloaded package.

glob_case

If all globs will be used in a case-sensitive way.

type_extractor

This setting conĄgures how the product type is extracted from the previously extracted metadata. In

the xpath setting one or more XPath expressions can supplied to fetch the product type. Each XPath

will be tried until one is found that produces a result. These results can then be mapped using the map

dictionary.

level_extractor

This section works very similar to the type_extractor but only for the product level. The product

level is currently not used.

preprocessing

This is the actual preprocessing conĄguration setting. It is split in defaults and product type speciĄc

settings. The defaults are applied where there is no setting supplied for that speciĄc type. The product

type is the one extracted earlier.

defaults

This section allows to conĄgure any one of the available steps. Each step conĄguration can

be overridden in a speciĄc product type conĄguration.

The available steps are as follows:

custom_preprocessor

A custom python function to be called.

path

20 Chapter 4. Configuration

https://mapserver.org/mapcache/config.html

View Server - Operator Guide

The Python module path to the function to call.

args

A list of arguments to pass to the function.

kwargs

A dictionary of keyword arguments to pass to the function.

subdatasets

What subdatasets to extract and how to name them.

subdataset_types

Mapping of subdataset identiĄer to output Ąlename postĄx for sub-

datasets to be extracted for each data Ąle.

georeference

How the extracted Ąles shall be georeferenced.

geotransforms

A list of georeference methods with options to try.

type

The type of georeferencing to apply. One of gcp, rpc, corner,

world.

options

Additional options for the georeferencing. Depends on the type of

georeferencing.

order

The polynomial order to use for GCP related georeferencing.

projection

The projection to use for ungeoreferenced images.

rpc_Ąle_template

The Ąle glob template to use to Ąnd the RPC Ąle. Template

parameters are {Ąlename}, {Ąleroot}, and {extension}.

warp_options

Warp options. See https://gdal.org/python/osgeo.

gdal-module.html#WarpOptions for details

corner_names

The metadata Ąeld name including the corner names. Tuple of

four: bottom-left, bottom-right, top-left and top-right

orbit_direction_name

The metadata Ąeld name containing the orbit direction

force_north_up

Circumvents the naming of corner names and assumes a north-

up orientation of the image.

tps

Whether to use TPS transformation instead of GCP polynomi-

als.

calc

4.5. Configuration Files 21

https://gdal.org/python/osgeo.gdal-module.html#WarpOptions
https://gdal.org/python/osgeo.gdal-module.html#WarpOptions

View Server - Operator Guide

Calculate derived data using formulas.

formulas

A list of formulas to use to calculate derived data. Each has the following

Ąelds

inputs

A map of characters in the range of A-Z to respective inputs. Each

has the following properties

glob

The input Ąle glob

band

The input Ąle band index (1-based)

data_type

The GDAL data type name for the output

formula

The formula to apply. See https://gdal.org/programs/gdal_calc.

html#cmdoption-calc for details.

output_postĄx

The postĄx to apply for the Ąlename of the created Ąle.

nodata_value

The nodata value to be used.

stack_bands

Concatenate bands and arrange them in a single Ąle.

group_by

A regex to group the input datasets, if consisting of multiple Ąle. The

Ąrst regex group is used for the grouping.

sort_by

A regex to select a portion of the Ąlename to be used for sorting. The

Ąrst regex group is used.

order

The order of the extracted item used in Śsort_byŠ. When the value ex-

tracted by sort_by is missing, then that Ąle will be dropped.

output

Final adjustments to generate an output Ąle. Add overviews, reproject to a com-

mon projection, etc.

options

Options to be passed to gdal.Warp. See https://gdal.org/python/osgeo.

gdal-module.html#WarpOptions for details.

custom_preprocessor

A custom python function to be called.

path

The Python module path to the function to call.

args

22 Chapter 4. Configuration

https://gdal.org/programs/gdal_calc.html#cmdoption-calc
https://gdal.org/programs/gdal_calc.html#cmdoption-calc
https://gdal.org/python/osgeo.gdal-module.html#WarpOptions
https://gdal.org/python/osgeo.gdal-module.html#WarpOptions

View Server - Operator Guide

A list of arguments to pass to the function.

kwargs

A dictionary of keyword arguments to pass to the function.

types

This mapping of product type identiĄer to step conĄguration allows to deĄne speciĄc step

settings, even overriding the values from the defaults.

4.6 Sensitive variables

Since environment variables include credentials that are considered sensitive, avoiding their exposure inside .env

Ąles would be the right practice. In order to manage transmitting sensitive data securely into the respective contain-

ers, docker secrets with the values of these variables should be created. Currently, four variables have to be saved

as docker secrets before deploying the swarm: OS_PASSWORD, OS_PASSWORD_DOWNLOAD, DJANGO_PASSWORD and

DJANGO_SECRET_KEY.

Following docker secret for traeĄk basic authentication needs to be created too: BASIC_AUTH_USERS_APIAUTH -

used for admin access to kibana and traeĄk. Access to the services for alternative clients not supporting main Shib-

boleth authentication entrypoints is conĄgured by creating a local Ąle BASIC_AUTH_USERS inside the cloned

repository folder.

The secret and the pass Ąle should both be text Ąles containing a list of username:hashedpassword (MD5, SHA1,

BCrypt) pairs.

Additionally, the conĄguration of the sftp image contains sensitive information, and therefore, is created using

docker conĄgs.

An example of creating conĄgurations for sftp image using the following command :

printf "<user>:<password>:<UID>:<GID>" | docker config create sftp-users-<name> -

An example of creating OS_PASSWORD as secret using the following command :

printf "<password_value>" | docker secret create OS_PASSWORD -

An example of creating BASIC_AUTH_USERS_APIAUTH secret:

htpasswd -nb user1 3vYxfRqUx4H2ar3fsEOR95M30eNJne >> auth_list.txt

htpasswd -nb user2 YyuN9bYRvBUUU6COx7itWw5qyyARus >> auth_list.txt

docker secret create BASIC_AUTH_USERS_APIAUTH auth_list.txt

For conĄguration of the shibauth service, please consult a separate chapter Access.

The next section Service Management describes how an operator interacts with a deployed VS stack.

4.6. Sensitive variables 23

View Server - Operator Guide

24 Chapter 4. Configuration

CHAPTER

FIVE

SERVICE MANAGEMENT

This section shows how a deployed VS stack can and should be interacted with.

5.1 Scaling

Scaling is a handy tool to ensure stable performance, even when dealing with higher usage on any service. For

example, the preprocessor and registrar can be scaled to a higher replica count to enable a better throughput when

ingesting data into the VS.

The following command scales the renderer service to 5 replicas:

docker service scale <stack-name>_renderer=5

A service can also be scaled to zero replicas, effectively disabling the service.

Warning: The redis and database should never be scaled (their replica count should remain 1) as this can

lead to service disruptions and corrupted data.

5.2 Updating Images

Updating the service software is done using previously established tools. To update the service in question, it needs

to be scaled to zero replicas. Then the new image can be pulled, and the service can be scaled back to its original

value. This forces the start of the service from the newly fetched image. Another option to keep the service running

during the upgrade procedure is to sequentially restart the individual instances of the services after pulling a newer

image using a command:

docker service update --force <stack-name>_<service-name>

5.3 Updating configurations or environment files

Updating the service conĄgurations or environment Ąles used can not be done just by rescaling the impacted

services to 0 and rerunning. The whole stack needs to be shut down using the command:

docker stack rm <stack-name>

A new deployment of the stack will use the updated conĄguration. The above mentioned process necessarily

involves a certain service downtime between shutting down of the stack and new deployment.

25

View Server - Operator Guide

5.4 Inspecting reports

Once a product is registered, a xml report containing wcs and wms getcapabilities of the registered product is

generated and can be accessed by connecting to the SFTP service via the sftp protocol. In order to log into the

logging folders through port 2222 (for vhr18, emg and dem have 2223 and 2224 respectively) on the hosting ip

(e.g. localhost if you are running the dev stack) The following command can be used:

sftp -P 2222 <username>@<host>

this will direct the user into /home/<username>/data sftp mounted directory which contains the 2 logging direc-

tories : to/panda and from/fepd

Note: The mounted directory that the user is directed into is `/home/user`, where user is the username, hence

when changing the username in the .conf Ąle, the sftp mounted volumes path in docker-compose.<collection>.yml

must be changed respectively.

5.5 Inspecting logs in development

All service components are running inside docker containers and it is therefore possible to inspect the logs for

anomalies via standard docker logs calls redirected for example to less command to allow paging through them.

docker logs <container-name> 2>&1 | less

In case that only one instance of a service is running on one node, the <container-name> can be returned by fetching

the available containers of a service on that node with a command

docker logs $(docker ps -qf "name=<stack-name>_<service-name>") 2>&1 | less

It is possible to show logs of all containers belonging to a service from a master node, utilizing docker service logs

command, but the resulting listing does not enforce sorting by time. Although logs of each task appear in the order

they were inserted, logs of all tasks are outputted interleaved. To quickly check latest time-sorted logs from the

service, sorting the entries by timestamp column, do:

docker service logs <stack-name>_<service-name> -t 2>&1 | sort -k 1 2>&1 | tail -n

→˓<number-of-last-lines> 2>&1 | less

The docker service logs is intended as a quick way to view the latest log entries of all tasks of a service, but should

not be used as a main way to collect these logs. For that, on production setup, an additional EFK (Elasticsearch,

Fluentd, Kibana) stack is deployed.

5.6 Inspecting logs in production

Fluentd is conĄgured as main logging driver of the Docker daemon on Virtual machine level. Therefore for other

services to run, Fluentd service must be running too. To access the logs, interactive and multi-purpose Kibana

interface is available and exposed externally by traeĄk.

For simple listing of the Ąltered time-sorted logs as an equivalent to docker service logs command, a basic

Discover app can be used. The main panel to interact with the logs is the Search bar, allowing Ąltered Ąeld-

data and free-text searches, modyĄng time range etc. The individual log results will then appear in the Document

table panel in the bottom of the page.

For speciĄc help with Discover panel, please consult Kibana official documentation

In order to select any other option from the Kibana toolkit, click the horizontal lines selection on the top left and

pick a tool.

26 Chapter 5. Service Management

https://www.elastic.co/guide/en/kibana/current/discover.html

View Server - Operator Guide

Figure 5.6.1: Kibana discover panel

Figure 5.6.2: Kibana menu

5.6. Inspecting logs in production 27

View Server - Operator Guide

Kibana also allows to aggregate log data based on a search query in two modes of operation: Bucketing and

Metrics being applied on all buckets.

These aggregations then are used in Visualisations with various chart modes like vertical bar chart, horizontal

line chart. Using saved searches improves the performance of the charts due to limiting the results list.

5.7 Increasing logging level

In default state, all components are conĄgured to behave in production logging setup, where the amount of in-

formation contained in the logs is reduced. Different components contain different ways to increase the reported

logging level for debugging purposes.

In order to increase logging level of EOXServer component, and therefore of each service, which depends on

it, a DEBUG conĄguration option contained in Ąle $INSTALL_DIR/pvs_instance/settings.py needs to be set to

True. This setting needs to be applied on each node, where there is a running a service for which the DEBUG

logging should be enabled, as it is stored in the respective docker volume <stack-name>_instance-data, which is

created per node.

A restart of respective service for the change to be applied is also necessary. In order to change the DEBUG settings

on an example of a renderer, do

docker exec -it $(docker ps -qf "name=<stack-name>_renderer") bash

cd ${INSTALL_DIR}/pvs_instance

sed -i 's/DEBUG = False/DEBUG = True/g' settings.py

In order to increase logging level of registrar and preprocessor services to DEBUG, the respective Python com-

mands need to be run with an optional parameter –debug.

Ingestor service by default logs its messages in DEBUG mode.

The cache services internally uses a Mapcache software, which usually incorporates an Apache 2 HTTP Server.

Due to that, logging level is shared throughout the whole service and is based on Apache .conf Ąle, which is stored

in $APACHE_CONF environment variable. To change the logging level, edit this Ąle, by setting a LogLevel

debug and then gracefully restart the Apache component (this way, the cache service itself will not restart and

renew default conĄguration).

docker exec -it $(docker ps -qf "name=<stack-name>_cache") bash

sed -i 's/<\/VirtualHost>/ LogLevel debug\n<\/VirtualHost>/g' $APACHE_CONF

apachectl -k graceful

5.8 Cleaning up

Current conĄguration of the services does not have any log rotation set up, which means that service logs can grow

signiĄcantly over time, if left not maintained and set on verbose logging levels. In order to delete logs older than

7 days from a single node, a following command can be run

journalctl --vacuum-time=7d

Additionally in order to delete older logs from docker containers present on a node, keeping only a certain number

of newest rows, a following command can be run.

truncate -s <number rows to keep> $(docker inspect -f '{{.LogPath}}' $container 2> /

→˓dev/null)

The Ąnal section Data Ingestion explains how to get data into the VS.

28 Chapter 5. Service Management

View Server - Operator Guide

5.9 Database backup

The database can be backed up with the script below. The STACK and BACKUP_PATH variables can be changed

depending on the stack and desired path of backup Ąles

#!/bin/bash

Variables to be changed

STACK="dem"

BACKUP_PATH="/path/to/backup/storage"

Script variables

FILE_NAME="$(date +'%Y%m%d').sql.gz"

DB_SERVICE=""$STACK"_database"

DB_CONTAINER="$(docker ps -l -q -f name=^/$DB_SERVICE)"

echo "Backing up $STACK stack"

echo "Backup path: $BACKUP_PATH"

echo "Backup file: $FILE_NAME"

echo "Backup service: $DB_SERVICE"

echo "DB container id: $DB_CONTAINER"

echo "Backing up to /$FILE_NAME"

docker exec $DB_CONTAINER sh -c "pg_dump -U "$STACK"_user -d "$STACK"_db -f c > /

→˓$FILE_NAME"

echo "Copying to $BACKUP_PATH"

docker cp $DB_CONTAINER:/$FILE_NAME $BACKUP_PATH

echo "Cleaning up"

docker exec $DB_CONTAINER sh -c "rm /$FILE_NAME"

To restore from a backed up Ąle run the below script. Here the STACK, DATE and BACKUP_PATH can be changed.

Note: Date for last backup must be in YYYYMMDD format

#!/bin/bash

Variables to be changed

STACK="dem"

DATE="20210722"

BACKUP_PATH="/path/to/backups"

Script variables

BACKUP_FILE="$BACKUP_PATH/$DATE.sql.gz"

UNCOMPRESSED_FILE="$BACKUP_PATH/$DATE.sql"

DB_SERVICE=""$STACK"_database"

DB_CONTAINER="$(docker ps -q -f name=$DB_SERVICE)"

echo "Restoring $STACK stack"

echo "Backup file: $BACKUP_FILE"

echo "Backup service: $DB_SERVICE"

echo "DB container id: $DB_CONTAINER"

echo "Unpacking $BACKUP_FILE"

gunzip $BACKUP_FILE

echo "Copying unpacked file"

docker cp $UNCOMPRESSED_FILE $DB_CONTAINER:/

echo "Restoring database"

docker exec $DB_CONTAINER sh -c "psql -U "$STACK"_user -d "$STACK"_db < /$DATE.sql"

(continues on next page)

5.9. Database backup 29

View Server - Operator Guide

(continued from previous page)

echo "Cleaning up"

docker exec $DB_CONTAINER sh -c "rm /$DATE.sql"

rm $UNCOMPRESSED_FILE

30 Chapter 5. Service Management

CHAPTER

SIX

DATA INGESTION

This section details the data ingestion and later management in the VS.

6.1 Redis Queues

The central synchronization component in the VS is the redis key-value store. It provides various queues, which

the services are listening to. For operators it provides a high-level interface through which data products can be

registered and managed.

Via the Redis, the ingestion can be triggered and observed. In order to eventually start the preprocessing of a prod-

uct, its path on the conĄgured object storage has to be pushed onto the preprocess_queue, as will be explained

in detail in this chapter.

As the Redis store is not publicly accessible from outside of the stack. So to interact with it, the operator has to

run a command from one of the services. Conveniently, the service running Redis also has the redis-cli tool

installed that lets users interact with the store.

When doing one off commands, it is maybe more convenient to execute it on a running service. For this, the docker

ps command can be used to select the identiĄer of the running docker container of the redis service.

container_id=$(docker ps -qf "name=<stack-name>_redis")

With this identiĄer, a command can be issued:

docker exec -it $container_id redis-cli ...

When performing more than one command, it can be simpler to open a shell on the service instead:

docker exec -it $container_id bash

As the container ID may change (for example when the replica is restarted) it is better to retrieve it for every

command instead of relying on a variable:

docker exec -it $(docker ps -qf "name=<stack-name>_redis")

For the sake of brevity, the subsequent commands in this chapter can be used with either of the above techniques

and will just print the Ąnal commands that are run inside the redis container.

Note: For the VS, only the List and Set Redis data types are really used.

Sets are an unordered collection of string elements. In the VS it is used to denote that an element is part of a

particular group, e.g: being preprocessed, or having failed registration.

Lists are used as a task queue. It is possible to add items to either end of the queue, but by convention items are

pushed on the ŞleftŤ and popped from the ŞrightŤ end of the list resulting in a Ąrst-in-Ąrst-out (FIFO) queue. It is

entirely possible to push elements to the ŞrightŤ end as-well, and an operator may want to do so in order to add an

element to be processed as soon as possible instead of waiting before all other elements before it are processed.

31

https://redis.io/topics/data-types

View Server - Operator Guide

The full list of available commands can be found for both Lists and Sets.

For a more concrete example the following command executes a redis-cli lpush command to add a new path

of an object to preprocess on the preprocess_queue:

redis-cli lpush preprocess_queue "data25/OA/PL00/1.0/00/urn:eop:DOVE:MULTISPECTRAL_

→˓4m:20180811_081455_1054_3be7/0001/PL00_DOV_MS_L3A_20180811T081455_20180811T081455_

→˓TOU_1234_3be7.DIMA.tar"

Usually, with a preprocessor service running and no other items in the preprocess_queue this value will be

immediately popped from the list and processed. For the sake of demonstration this command would print the

contents of the preprocess_queue:

$ redis-cli lrange preprocess_queue 0 -1

data25/OA/PL00/1.0/00/urn:eop:DOVE:MULTISPECTRAL_4m:20180811_081455_1054_3be7/0001/

→˓PL00_DOV_MS_L3A_20180811T081455_20180811T081455_TOU_1234_3be7.DIMA.tar

Now that the product is being preprocessed, it should be visible in the preprocessing_set. As the name indi-

cates, this is using the Set datatype, thus requiring the SMEMBERS subcommand to list:

$ redis-cli smembers preprocessing_set 0 -1

data25/OA/PL00/1.0/00/urn:eop:DOVE:MULTISPECTRAL_4m:20180811_081455_1054_3be7/0001/

→˓PL00_DOV_MS_L3A_20180811T081455_20180811T081455_TOU_1234_3be7.DIMA.tar

Once the preprocessing of the product is Ąnished, the preprocessor will remove the currently worked on path from

the preprocessing_set and add it either to the preprocess-success_set or the preprocess-failure_set

depending on whether the processing succeeded or not. They can be inspected using the same SMEMBERS subcom-

mand with one of set names as a parameter.

Additionally, upon success, the preprocessor places the same product path on the register_queue, where it can

be inspected with the following command.

$ redis-cli lrange register_queue 0 -1

/data25/OA/PL00/1.0/00/urn:eop:DOVE:MULTISPECTRAL_4m:20180811_081455_1054_3be7/0001/

→˓PL00_DOV_MS_L3A_20180811T081455_20180811T081455_TOU_1234_3be7.DIMA.tar

If an operator wants to trigger only the re-registration of a product without preprocessing the product path needs

to be pushed to this queue:

redis-cli lpush register_queue "/data25/OA/PL00/1.0/00/urn:eop:DOVE:MULTISPECTRAL_

→˓4m:20180811_081455_1054_3be7/0001/PL00_DOV_MS_L3A_20180811T081455_20180811T081455_

→˓TOU_1234_3be7.DIMA.tar"

Very similar to the preprocessing, during the registration the product path is added to the registering_set,

afterwards the path is placed to either the register-success_set or register-failure_set. Again, these

queues or sets can be inspected by the LRANGE or SMEMBERS subcommands respectively.

6.1.1 Ingestor and sftp

Triggering preprocessing and registration via pushing to the redis queues is very convenient for single ingestion

campaigns, but not optimal for continuous ingestion of new products from ŞliveŤ sources. Ingestor service,

together optionally with sftp service allow data ingestion to be initiated by external means.

Ingestor can work in two modes:

• Default: Exposing a simple / endpoint, and listening for POST requests containing datawith either a Browse

Report XML, Browse Report or a string with path to the object storage with product to be ingested. It then

parses this information and internally puts it into conĄgured redis queue (preprocess or register).

32 Chapter 6. Data Ingestion

https://redis.io/commands#list
https://redis.io/commands#set

View Server - Operator Guide

• Alternative: Listening for newly added Browse Report or Availability Report Ąles on a conĄgured path on a

Ąle system via inotify.

These Browse Report Ąles need to be in an agreed XML schema to be correctly handled. Sftp service en-

ables a secure access to a conĄgured folder via sftp, while this folder can be mounted to other vs services.

This way, Ingestor can listen for newly created Ąles by the sftp access. If the Ąledaemon alternative mode

should be used, INOTIFY_WATCH_DIR environment variable needs to be set and a command used in the docker-

compose.<stack>.ops.yml for ingestor service needs to be set to python3 filedaemon.py:

ingestor:

environment:

REDIS_PREPROCESS_MD_QUEUE_KEY: "preprocess_queue" # to override md_queue (json)␣

→˓and instead use (string)

command:

["python3", "/filedaemon.py"]

6.2 Direct Data Management

Sometimes it is necessary to directly interact with the preprocessor or registrar. The following section shows what

tasks on the preprocessor and registrar can be accomplished.

Warning: This approach is not recommended for everyday use, as it circumvents the Redis sets to track what

products have been registered and where the registration failed.

6.2.1 Preprocessing

In this section all command examples are assumed to be run from within a running preprocessor container. To

open a shell on a preprocessor, the following command can be used.

docker exec -it $(docker ps -qf "name=<stack-name>_preprocessor") bash

The preprocessor can be used in two modes. The Ąrst (and default mode when used as a service) is to be run as a

daemon: it listens to the Redis queue for new items, which will be preprocessed one by one. The second mode is

to run the preprocessor in a Şone-offŤ mode: instead of pulling an item from the queue, it is passed as a command

line argument, which is then processed normally.

preprocess \

--config-file /preprocessor_config.yml \

--validate \

--use-dir /tmp \

data25/OA/PL00/1.0/00/urn:eop:DOVE:MULTISPECTRAL_4m:20180811_081455_1054_3be7/

→˓0001/PL00_DOV_MS_L3A_20180811T081455_20180811T081455_TOU_1234_3be7.DIMA.tar

In order to preprocess a ngEO Ingest Browse Report, an additonal --browse-report parameter needs to be added:

preprocess \

--config-file /preprocessor_config.yml \

--browse-report \

--use-dir /tmp \

browse_report_test1.json

In this Şone-offŤ mode, the item will not be placed in the resulting set (preprocessing_set,

preprocess-success_set, and preprocess-failure_set).

6.2. Direct Data Management 33

View Server - Operator Guide

6.2.2 Registration Handling

For all intents and purposes in this section it is assumed, that the operator is logged into a shell on the registrar

service. This can be achieved via the following command (assuming at least one registrar replica is running):

s of the shared registrar/renderer database can be managed using the registrars instance manage.py script. For

brevity, the following bash alias is assumed:

alias manage.py='python3 /var/www/pvs/dev/pvs_instance/manage.py'

A collection is a grouping of earth observation products, accessible as a single entity via various service endpoints.

Depending on the conĄguration, multiple collections are created when the service is set up. They can be listed using

the collection list command.

New collections can be created using the collection create command. This can refer to a Collection Type,

which will restrict the collection in terms of insertable products: only products of an allowed Product Type can

be added. Detailed information about the available Collection management commands can be found in the CLI

documentation.

Collections can be deleted, without affecting the contained products.

Warning: As some other services have Ąxed conĄgurations and depend on speciĄc collections, deleting said

collections without a replacement can lead to conĄguration inconsistencies and ultimately service disruptions.

In certain scenarios it may be useful to add speciĄc products to or exclude them from a collection. For this, the

Product identiĄer needs to be known. To Ąnd out the Product identiĄer, either a query of the existing collection via

OpenSearch or the CLI command id list can be used.

When the identiĄer is obtained, the following management command inserts a product into a collection:

manage.py collection insert <collection-id> <product-id>

Multiple products can be inserted in one pass by providing more than one identiĄer.

The reverse command excludes a product from a collection:

manage.py collection exclude <collection-id> <product-id>

Again, multiple products can be excluded in a single call.

6.2.3 Product Handling

Registration Products can be registered using the EOxServer CLI tools as well.

manage.py product register \

--metadata-file data25 /OA/PL00/1.0/00/urn:eop:DOVE:MULTISPECTRAL_

→˓4m:20180811_081455_1054_3be7/0001/PL00_DOV_MS_L3A_20180811T081455_

→˓20180811T081455_TOU_1234_3be7.DIMA.tar/metadata.xml \

--print-identifier \

--type PL00

The identiĄer of the newly registered product is printed to the console and can be used to put it into a

collection. Additionally, it is necessary to add a coverage to it, which can be registered like:

manage.py coverage register \

-d data25 /OA/PL00/1.0/00/urn:eop:DOVE:MULTISPECTRAL_4m:20180811_081455_1054_

→˓3be7/0001/PL00_DOV_MS_L3A_20180811T081455_20180811T081455_TOU_1234_3be7.DIMA.

→˓tar/some.tif \ (continues on next page)

34 Chapter 6. Data Ingestion

https://docs.eoxserver.org/en/master/users/coverages.html#command-line-interfaces
https://docs.eoxserver.org/en/master/users/coverages.html#command-line-interfaces

View Server - Operator Guide

(continued from previous page)

-m data25 /OA/PL00/1.0/00/urn:eop:DOVE:MULTISPECTRAL_4m:20180811_081455_1054_

→˓3be7/0001/PL00_DOV_MS_L3A_20180811T081455_20180811T081455_TOU_1234_3be7.DIMA.

→˓tar/metadata.xml \

--identifier "${product_id}_coverage" \

--type RGBNir

Deregistration Products and coverages need to be derigestered when no longer in use. A product can be deregis-

tered using its identiĄer:

manage.py product deregister "${product_id}"

The contained coverage must also be deregistered manually:

manage.py coverage deregister "${product_id}_coverage"

6.2.4 Preprocessing vs registration

The preprocessing step aims to ensure that cloud optimized GeoTIFF (COG) Ąles are created in order to signif-

icantly speed up the viewing of large amount of data in lower zoom levels. There are several cases, where such

preprocessing is not necessary or wanted.

• If data are already in COGs and in favorable projection, which will be presented to the user for most of the

times, direct registration should be used. This means, paths to individual products will be pushed directly to

the register-queue.

• Also for cases, where preprocessing step would take too much time, direct registration allowing access to

the metadata and catalog functions, while justifying slower rendering times can be preferred.

6.2.5 Monitoring ingestion

Monitoring ingestion can be done on production system easily via Kibana using its query language KQL. Kibana

in Discover mode shows time histogram of individual entries, which makes it easy to visually infer the ingestion

progress in time. These queries can be saved for later use and more importantly to set up alerts and statistics on

these saved queries.

In order to watch for successful registrations or preprocessing campaigns, simply search for

"<stack-name>_registrar" AND "Successfully"

Example of such a query, Ąltering data for one day into the past from now:

https://kibana.pdas.prism.eox.at/app/discover#/?_g=(filters:!(),

→˓refreshInterval:(pause:!t,value:0),time:(from:now-1d,to:now))&_a=(columns:!(log,

→˓container_name),filters:!(),index:'57007c50-f270-11ea-8728-ab85b3e61ad6',

→˓interval:auto,query:(language:kuery,query:'"emg-pdas_registrar"%20AND%20

→˓"Successfully"'),sort:!())

stack-name, kibana-url and elasticsearch-index-id needs to be substituted with valid values.

For failures in preprocessing following search query can be used:

"<stack-name>_preprocessor" AND "ERROR" AND NOT "Target.replace"

Preprocessor and registrar by default run in mode, where they skip already registered/preprocessed products. This

KQL query does not list errors like ŞĄle is already in target storageŤ.

For checking of the status of individual product ingestion (for example to Ąnd out why it failed), it can be searched

for its path and then list surrounding documents and Ąlter them by docker container name. An example query

would be:

6.2. Direct Data Management 35

View Server - Operator Guide

"emg-pdas_registrar" AND "data26/0000171398/PL00_DOV_MS_L3A_20190313T075450_

→˓20190313T075450_PLA_000000_D5E9.DIR.tar"

Then click on an arrow on left border of the individual log message (document) to display more details -> View

surrounding documents link appears, which lists other logs close in time to this one (default 5 before and 5 after).

It is also advisable to Ąlter the logs per container (showing only logs from that registrar/preprocessor container,

that has selected surrounding documents).

Querying for ingestor logs allows to see if while using the ingestor push ingestion mode, the XML was parsed

correctly.

"<stack-name>_ingestor"

Next chapter Access describes used authorization and authentication concepts and lines out how the external access

to individual components and service as such is conĄgured.

36 Chapter 6. Data Ingestion

CHAPTER

SEVEN

ACCESS

This chapter describes general concepts of how external access to each component is provided and how authenti-

cation and authorization layer based on Shibboleth SP3. is conĄgured.

7.1 General overview

Each individual docker stack has its own internal network intnet where services can communicate between each

other. This network is not exposed to the public and provides most of the necessary communication. Additionally

external user access to some services (client, renderer, cache) is provided via external network extnet and reverse-

proxy (traeĄk) with load balancer.

These services can have a set of authentication and authorization rules applied both on traeĄk level and Shibbo-

leth SP level. Kibana and TraeĄk dashboard are also accessible externally, but through a different set of default

credentials.

7.2 Routing with traefik

Reverse-proxy service in base stack provides central access endpoint to the VS. It exposes ports 80 and 443 for

HTTP and HTTPS access in the host mode. ConĄguration of the reverse-proxy is done on three places.

First two are static and dynamic conĄguration Ąles traefik.yml and traefik-dynamic.yml. Static conĄgura-

tion sets up connections to providers and deĄne the entrypoints that TraeĄk will listen to. Dynamic conĄguration

deĄnes how the requests are handled. This conĄguration can change and is seamlessly hot-reloaded, without any

request interruption or connection loss. Third part are docker labels on individual services which TraeĄk provides

access to, for which an update requires removing and re-creating the stack.

For example following conĄguration snippet enables access to certain paths of renderer service under a given

hostname. It also sets externally set basic authentication and other rules via @file identiĄer, which references

global conĄgurations from traefik-dynamic.yml.

renderer:

deploy:

labels:

router for basic auth based access (https)

- "traefik.http.routers.vhr18-renderer.rule=Host(`vhr18.pdas.prism.eox.at`) &&␣

→˓PathPrefix(`/ows`, `/opensearch`, `/admin`)"

- "traefik.http.routers.vhr18-renderer.middlewares=auth@file,compress@file,

→˓cors@file"

- "traefik.http.routers.vhr18-renderer.tls=true"

- "traefik.http.routers.vhr18-renderer.tls.certresolver=default"

- "traefik.http.routers.vhr18-renderer.entrypoints=https"

general rules

- "traefik.http.services.vhr18-renderer.loadbalancer.sticky=false"

- "traefik.http.services.vhr18-renderer.loadbalancer.server.port=80"

(continues on next page)

37

https://wiki.shibboleth.net/confluence/display/SP3/Home

View Server - Operator Guide

(continued from previous page)

- "traefik.docker.network=vhr18-extnet"

- "traefik.docker.lbswarm=true"

- "traefik.enable=true"

An example of such auth@Ąle conĄguration from traefik-dynamic.yml would be following snippet, where

BASIC_AUTH_USERS_AUTH is referencing a docker secret conĄgured earlier:

http:

middlewares:

auth:

basicAuth:

realm: "PRISM View Server (PVS)"

usersFile: "/run/secrets/BASIC_AUTH_USERS_AUTH"

Updating of usersFile content needs a restart of reverse-proxy service afterwards. Unsecured HTTP access is

conĄgured to be redirected to the HTTPS endpoint. Inside the swarm among the services, only HTTP is used

internally.

7.3 Authentication and Authorization

Authentication of access to external parts of VS is made up of two options:

• TraeĄk provided basic authentication - conĄgured as file@auth and file@apiAuth

Here, access on such endpoint requires basic authentication credentials (username, password) to be inserted, while

web browsers are usually prompted for input. After inserting valid credentials, access is granted.

• Shibboleth Service Provider 3 + Apache 2 instance, to which requests are forwarded by TraeĄk ForwardAuth

middleware.

Middleware delegates the authentication to Shibboleth. If Shibboleth response code is 2XX, access is granted and

the original request is performed. Otherwise, the error response from Shibboleth is returned.

In order to authenticate with Shibboleth, a user must log in with valid credentials on the side of Identity Provider

(IdP), if doing so, the IdP informs the SP about successful login, accompanied by relevant user attributes and a

session is created for the user. SP then saves the information about a created session into a cookie and based on

user attributes can authorize access to the services. If the user was already logged in, he is automatically offered

the requested resource.

Currently setting individual authorization rules on a Collection (docker stack) and Service (docker service)

level is possible. It is yet not clearly possible to separate viewing and download functionality, as both of these parts

are handled by renderer service.

7.4 Configuration

For correct conĄguration of Shibboleth SP3 on a new stack, several steps need to be done. Most of these conĄg-

urations are usually done in the Initialization step using pvs_starter tool. Still, it is advised to check following

steps, understand them and change if necessary. BrieĆy summarized, SP and IdP need to exchange metadata and

certiĄcates to trust each other, SP needs to know which attributes the IdP will be sending about the logged-in user

and respective access-control rules are conĄgured based on those attributes. Most of the conĄgurations are done

via docker conĄgs deĄned in the docker compose Ąles.

• Create a pair of key, certiĄcate using attached Shibboleth utility config/shibboleth/keygen.sh in the

cloned vs repository and save them as respective docker secrets.

38 Chapter 7. Access

mailto:auth@file
https://doc.traefik.io/traefik/middlewares/forwardauth/
https://doc.traefik.io/traefik/middlewares/forwardauth/

View Server - Operator Guide

SP_URL="https://emg.pass.copernicus.eu" # service initial access point made␣

→˓accessible by traefik

./config/shibboleth/keygen.sh -h $SPURL -y 20 -e https://$SP_URL/shibboleth -n sp-

→˓signing -f

docker secret create <stack-name>_SHIB_CERT sp-signing-cert.pem

docker secret create <stack-name>_SHIB_KEY sp-signing-key.pem

• Get IDP metadata and save it as a docker conĄg. Also save the entityID of the IdP for further use in Ąlling

the shibboleth2.xml template.

docker config create idp-metadata idp-metadata-received.xml

• ConĄgure Apache ServerName used inside the shibauth service by modifying APACHE_SERVERNAME envi-

ronment variable of corresponding shibauth service in docker-compose.<stack>.ops.yml. This URL

should resolve to the actual service URL.

• ConĄgure SP and IdP EntityIDs used inside the shibauth service by modifying SPEntityID and

IDPEntityID environment variables of corresponding shibauth service in docker-compose.<stack>.

ops.yml. SPEntityID can be chosen in any way, IDPEntityID should be extracted from received IDP

metadata.

• Deploy your shibauth service and exchange your SP metadata with the IdP provider and have them register

your SP. Necessary metadata can be downloaded from url <service-url>/Shibboleth.sso/Metadata.

• Get information about attributes provided by IdP and update config/shibboleth/attribute-map.xml

by adding individual entries mapping name provided by IdP to id used by SP internally. Example conĄgu-

ration:

<Attributes xmlns="urn:mace:shibboleth:2.0:attribute-map" xmlns:xsi="http://www.w3.

→˓org/2001/XMLSchema-instance">

<Attribute name="urn:mace:dir:attribute-def:signed-terms" id="signed_terms_and_

→˓conditions"/>

<Attribute name="urn:mace:dir:attribute-def:primary-group" id="user_group_primary"/>

</Attributes>

• Create custom access rules based on these attributes and map these access controls to different internal

Apache routes to which TraeĄk ForwardAuth middleware will point. Access rules are created in config/

shibboleth/<stack-name>-ac.xml and config/shibboleth/<stack-name>-ac-cache.xml.

Example of external Access control rules conĄguration:

<AccessControl type="edu.internet2.middleware.shibboleth.sp.provider.XMLAccessControl

→˓">

<AND>

<RuleRegex require="signed_terms_and_conditions">.+</RuleRegex>

<Rule require="user_group_primary">

Privileged_Access Public_Access

</Rule>

</AND>

</AccessControl>

• Check conĄgured link between Apache conĄguration for shibauth service, access rules, TraeĄk Forwar-

dAuth middleware and per-service TraeĄk labels. Following simpliĄed examples show the links in more

detail:

APACHE_SERVERNAME environment variable needs to be set and same as the hostname, that TraeĄk will be serving

as main entry point. Part of docker compose of shibauth service in docker-compose.emg.ops.yml:

services:

shibauth:

(continues on next page)

7.4. Configuration 39

View Server - Operator Guide

(continued from previous page)

environment:

APACHE_SERVERNAME: "https://emg.pass.copernicus.eu:443"

deploy:

labels:

- "traefik.http.routers.shibauth.rule=Host(`emg.pass.copernicus.eu`) &&␣

→˓PathPrefix(`/Shibboleth.sso`)"

...

Relevant Apache conĄguration in config/shibboleth/shib-apache.conf, enabling Shibboleth authentica-

tion and authorization of the renderer service on the /secure endpoint.

Internally redirected to here. Rewrite for proper relaystate in shib

<Location /secure>

RewriteEngine On

RewriteCond %{HTTP:X-Forwarded-Uri} ^(.*)$ [NC]

RewriteRule ^.*$ %1 [PT]

</Location>

<LocationMatch "^/(admin|ows|opensearch)">

RewriteEngine On

AuthType shibboleth

ShibRequestSetting requireSession 1

Require shib-plugin /etc/shibboleth/pass-ac.xml

RewriteRule ^.*$ - [R=200]

</LocationMatch>

Part of TraeĄk ForwardAuth middleware conĄguration from docker-compose.emg.ops.yml, deĄning the inter-

nal address pointing to the shibauth-emg service and /secure endpoint in it:

renderer:

deploy:

labels:

- "traefik.http.middlewares.emg-renderer-shib-fa.forwardauth.address=http://

→˓shibauth-emg/secure"

- "traefik.http.routers.emg-renderer-shib.middlewares=emg-renderer-shib-fa,

→˓compress@file,cors@file"

40 Chapter 7. Access

	Introduction
	Components
	Docker Images
	Configuration Files
	Initialization and Setup

	Initialization
	Running the Initialization
	Configuration of the Initialization
	database
	django_admin
	preprocessor
	products
	collections
	storages
	cache

	Setup
	Docker
	Docker Swarm
	Docker Image Retrieval
	Logging
	Stack Deployment

	Configuration
	Stack Re-deploy
	Stack Re-creation
	Docker Compose Settings
	Environment Variables
	.env Files
	Groups of Environment Variables
	GDAL Environment Variables
	OpenStack Swift Environment Variables
	VS Environment Variables

	Configuration Files
	<stack-name>_init-db.sh
	<stack-name>_index-dev.html/<stack-name>_index-ops.html
	<stack-name>_mapcache-dev.xml/<stack-name>_mapcache-ops.xml
	<stack-name>_preprocessor-config.yaml

	Sensitive variables

	Service Management
	Scaling
	Updating Images
	Updating configurations or environment files
	Inspecting reports
	Inspecting logs in development
	Inspecting logs in production
	Increasing logging level
	Cleaning up
	Database backup

	Data Ingestion
	Redis Queues
	Ingestor and sftp

	Direct Data Management
	Preprocessing
	Registration Handling
	Product Handling
	Preprocessing vs registration
	Monitoring ingestion

	Access
	General overview
	Routing with traefik
	Authentication and Authorization
	Configuration

